
 

 

 
Abstract - It will be shown here first time that for the subject 

of short term prediction of electricity load, even though a large 
amount of data may be available, only the most recent of it may 
be of importance. That gives rise to prediction based on limited 
amount of data. Then, we propose implementation of some 
instances of architectures of artificial neural networks as potential 
systematic solution of that problem as opposed to heuristics and 
statistical ones that are in use. Since prediction when 
implemented in a real time system has no reference to be 
valuated, two independent mutually supporting predictions of the 
same quantity will be generated the results being averaged to 
produce the final one. A specific approach to the evaluation of the 
number of hidden neurons will be implemented. All these lead to 
a completely new procedure for one-step-ahead prediction of 
electricity loads at suburban level. Examples will be given related 
to monthly and weekly forecasting of the electricity load. 
Prediction is carried out on real data taken from the literature. 
Small prediction errors were experienced.   
 
Keywords— forecast, load prediction, electricity, artificial 
neural networks 
 

I. INTRODUCTION 
 

Electric load prediction is essential for power 
generation and operation [1]. It is vital in many aspects 
such as providing price effective generation, system 
security, and planning. Among others, it enables: 
scheduling fuel purchases, scheduling power generation, 
planning of energy transactions, and assessment of system 
safety [2]. The load forecast error produces high extra 
costs: if the load is underestimated one has extra costs 
caused by the damages due to lack of energy or by 
overloading system elements; if the load is overestimated, 
the network investment costs overtake the real needs, and 
the fuel stocks are overvalued, locking up capital 
investment. Consequently, the quality of load forecasts has 
greatly influenced the economic planning in areas such as 
generation capacity, purchasing fuel, assessing system's 
security, maintenance scheduling, and energy transmission 
[3]. The power load value is determined by several 
environmental and social factors among which the seasonal 
and daily profiles are the most influential. 

Temperature and air humidity are the primary 
parameters determining the energy consumption generally 
and especially in urban residential areas. Working times, 
holidays, and seasonal behaviour influence the load-time 
function. All together, the load curve is a nonlinear 

function of many variables that map themselves into it in 
an unknown way. 

In an inspired paper [4] Prof. Mendel' claims: 
"Prediction of short time series is a topical problem. Cases 
where the sample length N is too small for generating 
statistically reliable variants of prediction are encountered 
every so often. This form is characteristic of many applied 
problems of prediction in marketing, politology, 
investment planning, and other fields." Further he claims: 
"Statistical analysis suggests that in order to take carefully 
into account all components the prediction base period 
should contain several hundreds of units. For periods of 
several tens of units, satisfactory predictions can be 
constructed only for the time series representable as the 
sum of the trend, seasonal, and random components. What 
is more, these models must have a very limited number of 
parameters. Series made up by the sum of the trend and the 
random component sometimes may be predicted for even a 
smaller base period. Finally, for a prediction base period 
smaller than some calculated value Nmin, a more or less 
satisfactory prediction on the basis of observations is 
impossible at all, and additional data are required". 

Among the fields not mentioned in [4], dealing with 
really small set of data or "prediction base period", we will 
discuss here weekly and monthly short-term prediction of 
electricity loads at suburban level or on the level of a low 
voltage transformer station. In fact, the amount of data 
available in this case is large enough to apply any other 
forecasting method [5,6,7] but looking to the load diagram 
i.e. weekly (and monthly) load-value curves, we easily 
recognize that past values of the consumption are not very 
helpful when prediction is considered. That stands even for 
data from the previous week (month) and for data from the 
same week (month) in the previous month (year). 
Accordingly, we propose the problem of prediction of the 
load value in the next week (month) to be performed as a 
deterministic prediction based on very short time series. To 
help the prediction, however, in an appropriate way, we 
introduce past values e.g. load for the same week (month) 
but in previous month (year). That is in accordance with 
existing experience claiming that every month (week) in 
the year (month) has its own general consumption profile 
[5].  

The prediction of a time series is synonymous with 
modelling the underlying physical or social process 
responsible for its generation. This is the reason of the task 
difficulty. There were many attempts during the past few 
decades to propose a solution to the short term load 
prediction. Among the most comprehensive overviews of 
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the subject we find [5] and [2]. The methods applied may 
be categorized based on several aspects. By one 
categorization we see methods that use the weather 
information such as temperature and/or humidity as 
controlling variables or not [9]. On the other side a 
categorization exists based on the underlying mathematical 
algorithm used for modelling. From that point of view we 
first come to statistical methods (like auto-regression and 
time-series) predicting average values and deviations. 
Among them, the best known are the simple moving 
average (SMA) and the exponential moving average 
(EMA) method for prediction of trend [1,2]. That category 
includes the autoregressive integrated moving average 
(ARIMA) method [10] and similar as well. Although these 
statistical techniques are reliable, they fail to give accurate 
results when quick weather changes occur which form a 
nonlinear relationship with daily load [11]. Hence results of 
statistical methods in presence of such events are not 
satisfactory as desired. Therefore the emphasis has shifted 
to the application of various deterministic methods. Among 
the deterministic methods, one can find a two-fold 
categorization: parametric based method [6], [12] and, 
much frequently encountered the artificial intelligence 
method that is often represented by implementation of 
artificial neural networks [13]. 

The idea in our implementation is reminiscent to the 
substitution of the simple moving average (SMA) by the 
exponential moving average (EMA) method for prediction 
of trend [14,15]. The simple moving average is extremely 
popular among traders, but one argues that the usefulness 
of the SMA is limited because each point in the data series 
is equally weighted, regardless of its position in the 
sequence. It is common opinion that most recent data is 
more significant than the older and should have a greater 
influence on the final result. That led us into the subject of 
prediction based on short time series. Our idea is at the 
same time inspired by the classical deterministic method 
known as the k-nearest-neighbour [12], in which the data 
series is searched for situations similar to the current one 
each time a forecast needs to be made. This method asks 
for periodicity to be exploited that, as already discussed, in 
our case, may be helpful but not decisively. 

Having all that in mind we undertook a project of 
developing an artificial neural network (ANN) based 
method that will be convenient for systematic 
implementation in stationary time series prediction with 
reduced set of data. Our first results were applied to 
prediction of environmental as well as technological data 
and published in [8,16,17]. Analysis as to why neural 
networks are implemented for prediction may be found in 
[8]. The main idea implemented was the following: If one 
wants to create neural network that may be used for 
forecasting one should properly accommodate its structure. 

 Following these considerations new forecasting 
architectures were developed. Namely, prediction is an 
activity that is always related to uncertainty. One is 
supposed to have at least two solutions for them to support 

each other. The structures developed were named Time 
Controlled Recurrent (TCR) and Feed Forward 
Accommodated for Prediction (FFAP). Both were 
implemented successfully for prediction in modern 
developments in micro electronics [17] as well as in other 
areas including load prediction on yearly basis [18]. 

The goal of this paper is to put the new methods into a 
broader context of implementation of ANNs for short term 
forecasting of electricity loads on weekly and monthly 
basis. Namely, the weekly (we will proceed with one term 
–week- from now one) load curve at a suburban (transfor-
mer station) level is influenced by several factors the main 
being the time of the year. Accordingly a predictor is to be 
capable to approximate two curves concurrently. To meet 
that we upgraded our original TCR and FFAP ANN 
structures to accommodate for implementation in the field 
of short term electricity load forecasting on hourly basis. 
The results obtained were published in [19] and [20], for 
feed-forward and for recurrent ANNs, respectively. Those 
ideas will now be implemented for weekly and monthly 
prediction. In addition we here we propose an averaging 
method that will use both predictions in order to smooth 
the prediction error so making the final result as depen-
dable as possible. Finally, we propose a method for finding 
the proper number of hidden neurons in both networks. 

The structure of the paper is as follows. After general 
definitions and statement of the problem we will give a 
short background related to ANNs application to 
forecasting. Then we will describe two solutions for 
possible applications of ANNs aimed to the same 
forecasting task. Finally short discussion of the results and 
consideration related to future work will be given. 

 
II. PROBLEM FORMULATION AND SOLUTION 

 
A time series is a number of observations that are taken 

consecutively in time. A time series that can be predicted 
precisely is called deterministic, while a time series that has 
future elements which can be partly determined using 
previous values, while the exact values cannot be predicted, 
is said to be stochastic. We are here addressing only 
deterministic type of time series.  

Consider a scalar time series denoted by yi, i=1, 2, … 
m. It represents a set of observables of an unknown 
function, taken at equidistant time instants separated by the 
interval Δt i.e. ti+1=ti+Δt. One step ahead forecasting means 
to find such a function )(ˆˆ tfy = , that will perform the 
mapping  

 
εˆ)( 111 +== +++ mmm ytfy ,           (1) 

 
where 1ˆ +my is the desired response, with an acceptable 
error ε. 

The prediction of a time series is synonymous with mo-
deling of the underlying physical or social process 
responsible for its generation. This is the reason of the 



 

difficulty of the task. There have been many attempts to 
find solution to the problem. Among the classical 
deterministic methods we may mention the k-nearest-
neighbor [21], in which the data series is searched for 
situations similar to the current one each time a forecast 
needs to be made. This method asks for periodicity to be 
exploited that, as already discussed, here is not of much a 
help. 

 
Fig. 1. Fully connected feed-forward neural network with 
one hidden layer and multiple outputs 

 
In the past decades ANNs have emerged as a 

technology with a great promise for identifying and 
modeling data pat-terns that are not easily discernible by 
traditional methods. A comprehensive review of ANN use 
in forecasting may be found in [22]. Among the many 
successful implementations we may mention [23]. A 
common feature, however, of the existing application is 
that they ask for a relatively long time series to become 
effective. Typically it should be not shorter then 50 data 
points [22]. In the case under consideration it means at 
least five years backward. This is due to the fact that they 
all look for periodicity within the data. Very short time 
series were treated [23]. Here additional "non-sample infor-
mation" was added to the time series in order to get 
statistical estimation from deterministic data.  

That is why we went for a search for topological 
structures of ANN that promise prediction based on short 
time series. In the next, we will first briefly introduce the 
feed-forward neural networks that will be used as a basic 
structure for prediction throughout this paper.  

The network is depicted in Fig. 1. It has only one 
hidden layer, which has been proven sufficient for this kind 
of problem [24]. Indices: "in", "h", and "o", in this figure, 
stand for input, hidden, and output, respectively. For the set 
of weights, w(k,l), connecting the input and the hidden 
layer we have: k=1,2,..., min, l=1,2,..., mh, while for the set 
connecting the hidden and output layer we have: k=1,2, 
...mh, l=1,2,..., mo. The thresholds are here denoted as 

rmx,θ where r=1,2, …, mh or mo, with x standing for "h" or 
"o", depending on the layer. The neurons in the input layer 
are simply distributing the signals, while those in the 
hidden layer are activated by a sigmoidal (logistic) 
function. Finally, the neurons in the output layer are 
activated by a linear function. The learning algorithm used 
for training is a version of the steepest-descent 
minimization algorithm [25]. The number of hidden 

neurons, mh, is of main concern. To get it we applied a 
procedure that is based on proceedings given in [26] but 
here further developed.  

In prediction of time series, in our case, a set of 
observables (samples) is given (approximately every fifteen 
minutes) meaning that only one input signal is available 
being the discretized time [27]. To get the average monthly 
consumption we averaged the data for every month of the 
year. According to (1) we are predicting one quantity at a 
time meaning one output is needed, too. The values of the 
output are numbers (average power for a period of one 
month). To make the forecasting problem numerically 
feasible we performed transformation in both the time 
variable and the response. The time was reduced by t0 so 
that  

 
t=t*-t0.             (2)  

 
Having in mind that t* stands for the time (in weeks), this 
reduction gives the value of 0 to the time (t0) related to the 
first sample. The samples are normalized in the following 
way  
 

y=y* -M            (3)  
 

where y* stands for the current value of the target function, 
M is a constant (for example M=595.19, being the average 
monthly consumption for a year).  

If the architecture depicted in Fig. 1 was to be 
implemented (with one input and one output terminal) the 
following series would be learned: (ti, f(ti)), i=1,2,....  

Starting with the basic structure of Fig. 1, in [16] 
possible solutions were investigated and two new 
architectures were suggested to be the most convenient for 
the solution of the forecasting problem based on short 
prediction base period. Here, however, having in mind the 
availability of data related to previous year, these 
architectures will be properly accommodated. 

The first one, named time controlled recurrent (TCR) 
was inspired by the time delayed recurrent ANN. It is a 
recurrent architecture with the time as input variable so 
controlling the predicted value. Our intention was to 
benefit from both: the generalization property of the ANNs 
and the success of the recurrent architecture. Its structure is 
depicted in Fig. 2a 
 



 

a) 

 b) 
 

Fig. 2. a) Time controlled recurrent ANN and b) ETCR.  
b) Extended time cont rolled recurrent ANN 

 
We extend, now, this architecture so that we allow for 

the values of the power consumption, at a given time per 
day, but of the same month in the previous year, to control 
the output. 

Hence, the term extended will be added. The resulting 
architecture is depicted in Fig. 2b. It will be referred from 
now on to as the Extended Time Controlled Recurrent 
(ETCR) architecture. Here in fact, the network is learning a 
set in which the output value representing the average 
power consumption for a given month in a given year is 
controlled by the present time and by its own previous 
instances: 

 
...3,2,1),,,,( ,13,2,1,, == −−−− ipppptfp ininininiin   (4) 

 
Here n stand for the number of the month (in the year). 

In that way the values indexed with n are from the actual 
year, while the value indexed n-1 is from the previous year. 
i stands for the i-th sample in the year selected. The actual 
value pn,i is unknown and should be predicted. 
Incrementing i, in fact, means moving the prediction 
window one step ahead. These quantities are illustrated in 
Fig. 3. It represents the load curve for a two years. Note the 
x-axis is reduced to the first week available while the y-
axis represents the same curve twice. The upper curve 
depicts original load values while the lover represents the 
reduced value (by the average weekly) consumption.  

The second structure was named feed forward 
accommodated for prediction (FFAP) and depicted in Fig. 
4a. Our idea was here to force the neural network to learn 
the same mapping several times simultaneously but shifted 
in time. In that way, we suppose, the previous responses of 
the function will have larger influence on the f(t ) mapping. 
In this architecture there is one input terminal that, in our 
case, is ti. The Output3 terminal, or the future terminal, in 
our case, is to be forced to approximate yi+1. In cases where 
multiple-step prediction is planned Output3 may be seen as 
a vector. Output2 should represents the present value i.e. yi. 
Finally, Output1 should learn the past value i.e. yi-1. Again, 
if one wants to control the mapping by a set of previous 
values, Output1 may be seen as a vector.  

 

Fig. 3. Average power (top) and its reduced value, by 
595.19, (bottom) versus time (weeks) 

 
As an example we may express the functionality of the 

network as  
 

{yi+1, yi, yi-1, yi-2}=f(ti),   i=3,4,...         (5) 
 
where Output1={yi-1, yi-2}, meaning that: one future (i+1), 
one present (i), and two previous (i-1, i-2) responses are to 
be learned.  

It is our experience that the FFAP architectures 
produces better results than the TCR. Nevertheless, we 
regularly implement both of them and use the results 
obtained as reference to each other when choosing the 
forecast that makes most sense. That allows avoidance of 
solutions that represent local minima in the optimization 
process representing the training of the ANN.  

In the case of hourly prediction of power consumption 
we extended the FFAP architecture exactly in the same 
way as we did with the TCR. In that way for the 
approximation function we may write the following 

 
{pn,i+1, pn,i, pn,i-1, pn,i-2} = f(ti, pn-1,i}  i=1.2.3...      (6) 
 

The new network is approximating the future 
(unknown) value pn,i+1, based on the actual time ti, the 
actual consumption pn,i, the past consumption values for the 
given year (pn,i-k, k=1,2,3), and the past consumption values 



 

for the same month at the actual time of the previous year 
(pn-1,i). The new architecture is referred to as extended feed 
forward accommodated for predict ion (EFFAP). It is 
depicted in Fig. 4b. 

a) 

pn i+-1, 1

ti

pn i, -2

pn i, -1

pn i,

pn i, +1 b) 
 

Figure 4. a) Feed forward ANN structure accommodated 
for predict ion (FFAP), and b) The Extended feed forward 
accommodated for predict ion ANN (EFFAP) according to 

(6) 

In the next the procedure of implementation of ETCR 
and EFFAP network will be described. It consists of the 
following steps. 
STEP 1. For a given week (month) (ith week) a training 

table is constructed for both ANN structures. These 
constructs are illustrated in Table I and Table II, for the 
ETCR and EFFAP network, respectively, for i=44.   

STEP 2. Both network are repeatedly trained with the same 
training data but with increased complexity i.e. with 
increased number of hidden neurons. We start with mh=3 
and end with mh=10. The number of neurons is chosen 
to be "small" since the problem under consideration is 
not a difficult one. One is not to forget that an ETCR 
ANN, like the one depicted in Fig. 2, having 10 hidden 
neurons, will have 70 free parameters which is much 
above the need to extrapolate by one step the curve 
given in Fig. 3. 

STEP 3. To find the proper ETCR and EFFAP number of 
hidden neurons, the predicted values are compared. 
Namely, we consider the prediction as a step in darkness 
and to get an authentic prediction, we think, one needs at 
least two solutions supporting each other (The well 
known medical "second opinion"). In that way we 
choose two among the eight ETCR and eight EFFAP 
solutions (each from a kind) that are the most similar. 

4. Since the ETCR and the EFFAP solutions just chosen 
are of the same importance, as the final result, we adopt 
their average. 

5. Then we proceed to the next week 
 

III. IMPLEMENTATION EXAMPLE 
 

 The diagram depicted in Fig. 3 is created from the 
UNITE competition data [27]. Since there are data for two 
years only we created 24 instances for monthly and 101 
instances for weekly consumption as depicted in Fig. 3. 
Having in mind, however that our method asks for a value 
of the load for the same month in the previous year, the 
first 12 instances are to be reserved. Furthermore, to start 
the prediction we need some values of the previous months. 
For these reasons we started the prediction with the fourth 
part of the data i.e. from the 19th month. The weekly 
prediction started at the end of the first year (last week of 
December) which, as will be discovered later is of 
importance for the prediction results. 

 
TABLE I ONE TRAINING SESSION FOR ECTR FOR WEEKLY 

PREDICTION 
Inputs Outputs 

ti pn,i-1 pn,i-2 pn,i-3 pn-1,i pn,i 
45 76.84 86.73 37.08 -113.56 49.92 
46 49.92 76.84 86.73 -108.83 97.17 
47 97.17 49.92 76.84 -105.85 101.78 
48 101.78 97.17 49.92 -80.29 87.01 
49 87.01 101.78 97.17 -78.52 121.89 
50 121.89 87.01 101.78 -40.11 140.05 
51 140.05 121.89 87.01 -4.31 ? 

 
TABLE II ONE TRAINING SESSION FOR EFFAP FOR WEEKLY 

PREDICTION  
Inputs Outputs 

ti pn-1,i pn,i-2 pn,i-1 pn,i pn,i+1 
44 -113.56 37.08 86.73 76.84 49.92 
45 -108.83 86.73 76.84 49.92 97.17 
46 -105.85 76.84 49.92 97.17 101.78 
47 -80.29 49.92 97.17 101.78 87.01 
48 -78.52 97.17 101.78 87.01 121.89 
49 -40.11 101.78 87.01 121.89 140.05 
50 -4.31 ? ? ? ?=pn,51 
 
Table I and Table II are examples of the training set for the 
first prediction. The rest of the training set is obtained by 
"sliding" down the table of the load as a function of the 
week number.  

 

TABLE III THE MOST SIMILAR ETCR AND EFFAP 
SOLUTIONS ON RESTORED ORIGINAL INPUT DATA FOR 

WEEKLY PREDICTION 
tn ECTR EFFAP Average Expected 



 

mh (p) mh (p) (p) (p) 

51 5 746.759 5 736.506 741.633 615.027 
52 7 662.406 8 663.523 662.964 647.869 
53 3 579.127 9 706.465 642.796 661.6578 
54 9 740.493 8 635.385 687.939 683.78 
55 10 675.972 5 668.981 672.477 696.83 
56 5 697.742 8 698.717 698.23 726.75 
57 9 761.235 10 762.086 761.66 726.583 
58 6 716.076 6 719.692 717.884 690.366 
59 6 670.976 4 687.522 679.249 668.848 
60 4 662.313 6 663.963 663.138 649.366 

 
 As a result of STEP 3 described in the previous 

paragraph, Table III was created. While its content is self 
explainable we will here stress again that among the 
predictions for a given week, the two most similar were 
saugth. So, for example, for the 54th week the prediction of 
the ETCR ANN built by nine hidden neurons and the 
EFFAP ANN built by eight neurons were the most similar 
ones. These two were chosen and the average calculated. 

Fig. 5. Visualization of the last two columns of Table III 
 

TABLE IV PREDICTION ERROR FOR WEEKLY PREDICTION 

ti 
Error 
ECTR 

% 

Error 
EFFAP 

% 

Error 
Average 

% 
51 -21.4 -19.8 -20.6 
52 -2.24 -2.42 -2.33 
53 12.5 -6.77 2.85 
54 -8.3 7.08 -0.608 
55 3.0 4.0 3.5 
56 4.0 3.86 3.92 
57 -4.77 -4.89 -4.83 
58 -3.72 -4.25 -3.99 
59 -7.06 -7.60 -7.33 
60 -1.99 -2.25 -2.12 

 
Note, to complete the prediction the values produced by (3) 
were to be restored . That practicaly meant that all entries 
of Table III were obtained by incrementation by 595.19. 
Fig. 5 depicts the two last columns of Table III. Namely the 
expected and the predicted values are drawn together. 

Finally, in order to get even better insight into the 
results, the prediction error was calculated and depicted in 
Table IV.  A graphical representation of Table IV is given 
in Fig. 6. It is easy to recognize that after escaping from the 
“fatal” last week of the year, the prediction goes smoothly 
wit prediction error no larger than 8%. 
 

Figure 6. Prediction error (in %) of the ETCR, EFFAP and 
the averaged solution (Graphical depiction of Table IV) 

 
Table V represents the numerical data used to create 

Fig. 8.  

Fig. 7. Visualization of the last two columns of Table IV 
After implementation the same procedure to the 

prediction of the monthly consumption we got the curves 
depicted in Fig. 7 and Fig. 8, for the consumption and for 
the error, respectively. 

As can be seen the error of the average value compared 
with the expected one is less than 2% in all six cases.  

It is interesting to note that the prediction errors of the 
ETCR and the EFFAP ANNs are much larger (less than 
6%). That means that the worst prediction would never 
exceed that value. By good luck, however, in this case, 
cancellation occurred during the computation of the 
average which led to an extraordinary good result. 
   

TABLE V PREDICTION ERROR FOR MONTHLY PREDICTION 

ti 
Error (%) 

ECTR 
Error (%) 
EFFAP 

Error (%) 
Average 

19 1.735 -0.5267 0.604 
20 -1.240 0.6625 -0.289 



 

21 4.687 -4.988 -0.151 
22 3.051 0.576 1.813 
23 -0.506 -0.161 -0.334 
24 2.798 -0.335 1.232 

 

 
Figure 8. Prediction error (in %) of the STCR, EFFAP and 

the averaged solution (Graphical depiction of Table V) 
 

IV. CONCLUSION 
 

One week (month) ahead prediction of suburban 
average electricity load, based on short time series, was 
presented. It was shown first that for the subject of short 
term prediction of electricity load, even though a large 
amount of data may be available, only the most recent of it 
may be of importance. That gives rise to prediction based 
on limited amount of data. We here proposed 
implementation of some instances of architectures of 
artificial neural networks as potential systematic solution of 
that problem as opposed to heuristics that are in use. To 
further rise the dependability of the predicted data 
averaging of two independent predictions was proposed. A 
specific approach to the choice of the number of hidden 
neurons was implemented. Example was given related to 
monthly forecasting of the electricity load at suburban 
level. Prediction was carried out on real data taken the 
literature. Acceptable prediction errors were obtained.    

 
ACKNOWLEDGMENT 

 
This research was partially supported by the Ministry of 

Education Science and technological Development of 
Serbia within the project TR32004.  

 
REFERENCES 

 
[1] H.M. AI-Hamadi, S.A. Soliman, "Short-term electric 

load forecasting based on Kalman filtering algorithm 
with movingwindow weather and load model", Electric 
Power Systems Research, Vol. 68, No. 1, 2004, pp. 47-
59. 

[2] S. Tzafestas, E. Tzafestas, "Computational Intelligence 
Techniques for Short-Term Electric Load Forecasting", 

Journalof Intelligent and Robotic Systems, Vol. 31, No. 
1-3, 2001, pp.7-68. 

[3] F. Liu , R.D. Findlay, Q. Song, " A Neural Network 
Based Short Term Electric Load Forecasting in Ontario 
Canada", Int. Conf. on Computational Intelligence for 
Modelling Control and Automation and Int. Conf. on 
Intelligent Agents, Web Technologies and Internet 
Commerce, (CIMCA-IAWTIC V6), 2006, pp. 119-125. 

[4] A. S., Mandel', "Method of Analogs in Prediction of 
Short Time Series: An Expert-statistical Approach", 
Automation and Remote Control, Vol. 65, No. 4, April 
2004, pp. 634-641.  

[5] P., Murto, "Neural Network Models for Short -Term 
Load Fore-casting", M S Thesis, Helsinki University of 
Technology, 1998.  

[6] F., Cavallaro, "Electric load analysis using an artificial 
neural network", Int. J. of Energy Research, Vo l. 29, 
2005, pp. 377–392.  

[7] H., Hahn, S., Meyer-Nieberg, and S., Pickl, "Electric 
load fore-casting methods: Tools for decision making", 
European J. of Operational Research, Elsevier, Vol. 199, 
2009, pp. 902–907.  

[8] J. Milojković, V. B. Litovski, "New methods of 
prediction implemented for sustainable development", 
Proc. of the 51th Conf. ETRAN, Herceg Novi, Monte 
Negro, June 2007, Paper no. EL1.8 (in Serbian).  

[9] Malki H.A., Karayiannis N.B., and Balasubramanian 
M., (2004), "Short-term electric powerload forecasting 
using feedforward neural networks", Expert Systems, 21 
(3) 157-167. 

[10] Amjady, N., (2001), “Short term hourly load 
forecasting using time-series modeling withpeak load 
estimation capability”. IEEE Transactions on Power 
Systems, 16 (3) 498–505. 

[11] Seetha, H. and Saravanan, R. (2007), “Short Term 
Electric Load Prediction Using FuzzyBP”, Journal of 
Computing and Information Technology – CIT, 15 ( 3) 
267–282. 

[12] Plummer, E.A. (2000), “Time series forecasting with 
feed-forward neural networks:guidelines and 
limitations”, M.S. Thesis, University of Wyoming, 
Laramie. 

[13] Riaz Khan, M., and Abraham, A., (2003) “Short Term 
Load Forecasting Models in CzechRepublic Using Soft 
Computing Paradigms”, International Journal of 
Knowledge-BasedIntelligent Engineering Systems, 7 (4) 
172-179. 

[14] Box, J.E.P. and Jenkins, G. (1990), “Time Series 
Analysis, Forecasting and Control”,Holden-Day, San 
Francisco, CA. 

[15] Montgomery, D.C., Jennings, C.L., and Kulahci, M., 
(2008), “Introduction to Time SeriesAnalysis and 
Forecasting”, Wiley, Hoboken, NJ. 

[16] J. Milojković, V. B. Litovski, "Comparison of some 
ANN based forecasting methods implemented on short 
time series", Proc. of the 9th Symp. NEUREL-2008, 

-6

-4

-2

0

2

4

6

19 20 21 22 23 24

Pr
ed

ic
tio

n 
er

ro
r (

%
)

ECTR

EFFAP

Average

Month No.



 

Belgrade, ISBN 978-1- 4244-2903-5, Sept. 2008, pp. 
175-178.  

[17] J. Milojković, V. B. Litovski,  "Short term forecasting 
in Electronics", Int. J. of Electronics, Vol. 98, No. 2, 
2011, pp. 161-172.  

[18] J. Milojković, V. B. Litovski, O., Nieto-Taladriz, and 
S., Bojanić, "Forecasting Based on Short Time Series 
Using ANNs and Grey Theory – Some Basic 
Comparisons", In Proc. of the 11th Int. Work-Conf. on 
Artificial Neural Networks, IWANN 2011, June 2011, 
Torremolinos-Málaga (Spain). J. Cabestany, I. Rojas, and 
G. Joya (Eds.): Part I, LNCS 6691, pp. 183–190, 2011, © 
Springer-Verlag, Berlin, Heidelberg.  

[19] J. Milojković, V. B. Litovski, „Dynamic Short-Term 
Fore-casting Of Electricity Load Using Feed-Forward 
ANNs", Int. J. of Engineering Intelligent Systems for 
Electrical Engineering and Communication, Vol. 17, No. 
1, March 2009, pp. 38-48.  

[20] J. Milojković, V. B. Litovski,  "Short -term 
Forecasting of Electricity Load Using Recurrent ANNs", 
"Electronics", ISSN: 1450-5843, Vol. 14, No. 1, June 
2010, pp. 45-49.  

[21] E.A., Plummer, "Time series forecasting with feed-
forward neural networks: guidelines and limitations", 
M.S. Thesis, University of Wyoming, Laramie, USA, 
July 2000.  

[22] B.G., Zhang, "Forecasting with artificial neural 
networks: The state of the art", Int. J. of Forecasting, 
Vol. 14, No. 1, March 1998, pp. 35-62  

[23] K., Brännäs, and J., Hellström, "Forecasting based on 
Very Small Samples and Additional Non-Sample 
Information", Umeǻ Economic Studies 472, Umeǻ 
University , Sweden, 1998  

[24] T., Masters, "Practical Neural Network Recipes in 
C++", Academic Press, San Diego, 1993.  

[25] Z., Zografski, "A novel machine learning algorithm 
and its use in modeling and simulation of dynamical 
systems", in Proc. of 5th Annual European Computer 
Conf., COMPEURO '91, Hamburg, Germany, 1991, pp. 
860-864.  

[26] E.B., Baum, and D., Haussler, "What size net gives 
valid generalization", Neural Computing, 1989, Vol. 1, 
pp. 151-160. 

[27] -,World-wide competition within the EUNITE 
network, http://neuron.tuke.sk/competition. 

 
 
 
 


	I. Introduction
	II. Problem formulation and solution
	III. Implementation Example
	IV. Conclusion
	Acknowledgment
	References

